

Catalysis Today 30 (1996) 59-65

The performance and structure of rare earth oxides modified by strontium fluoride for methane oxidative coupling

Ruiqiang Long, Yaping Huang, Weizheng Weng, Huilin Wan *, Khirui Tsai

Department of Chemistry and State Key Laboratory for Physical Chemistry of the Solid Surface, Xiamen University, Xiamen, 361005, China

Abstract

Strontium fluoride promoted rare earth (La, Nd, Sm, Eu, Gd, Dy, and Y) oxides were more selective than the corresponding unpromoted rare earth oxides for the methane oxidative coupling to ethane and ethene. The XRD results indicated that the partial anionic or cationic exchanges and interaction between the oxide and fluoride phases took place in most of the catalysts studied in this paper, leading to the formation of new oxyfluoride phases. The possible formation of anionic vacancies in the lattice as the result of ionic exchange and interaction between the phases will be favorable to the activation of molecular oxygen and the improvement of catalytic performance.

Keywords: Methane oxidative coupling; Rare-earth oxide; Strontium fluoride; Ionic exchange; Anionic vacancy

1. Introduction

Methane oxidative coupling (MOC) to C₂₊ hydrocarbons has been a much investigated area in recent decade. A large number of catalysts has been found to be active and selective for the formation of ethane and ethene. Among these catalysts, the rare earth oxides (REO), especially Sm₂O₃ and La₂O₃, have been extensively studied as MOC catalysts due to their high catalytic activities and selectivities as well as satisfactory thermal stabilities [1–4]. In order to further improve the catalytic performance of REO catalysts for MOC reaction, some promoters, usually alkali-metal or alkaline earth-metal

oxides, have been added to the REO catalyst systems [5,6]. However, these alkali-metal or alkaline earth-metal oxides doped catalysts usually exhibit strongly basic property, and are easily poisoned by the CO₂ generated during the reaction, so that a higher reaction temperature is required to maintain an adequate level of activity. Besides the promotional effect of metal oxides mentioned above, the benefits of addition of chlorinated compounds to the MOC reaction have also been reported by many research groups [7–10]. Recently, Lunsford et al. [9,10] reported a Cl⁻ promoted Li⁺-MgO catalyst which showed good catalytic performance for both MOC and ODE (oxidative dehydrogenation of ethane). In contrast to the unpromoted Li+-MgO system, alkane conversions over the Li+-MgO-Cl- catalysts with a Cl/Li

^{*} Corresponding author.

ratio of 0.9 were almost unaffected by CO₂, since the presence of Cl⁻ ions at an appropriate level modified the catalyst so that it no longer functioned as a strongly basic oxide catalyst and would therefore not be easily poisoned by CO₂. In addition to chlorinated compounds, We have recently found that metal fluorides also showed significant promotional effects on the oxide catalysts for the MOC and oxidative dehydrogenation of light alkanes (C₂H₆ and C₃H₈) reactions [11-13]. The beneficial effects resulting from addition of fluorides to oxides include (i) possible formation of lattice defects, such as anionic vacancies, which are requisite for the adsorption and activation of O2 over the catalysts with stable cationic valencies, (ii) modification of the basicity of metal oxides, and (iii) isolation of the surface active oxygen species. In this work, the catalytic property of a series of SrF_2 promoted Ln_2O_3 catalysts with Ln = La, Nd, Sm, Gd, Eu, Dy and Y will be reported. Attention will be focused on the correlations between catalytic properties and the bulk composition and structure of the catalysts.

2. Experimental

The SrF_2 promoted catalysts were prepared by grinding different mole ratios of rare earth oxides (La_2O_3 , Nd_2O_3 , Sm_2O_3 , Gd_2O_3 , Eu_2O_3 , Dy_2O_3 and Y_2O_3 , purity > 99.5%) with SrF_2 into fine powder. The mixture was then mixed with certain amount of deionized water to form a paste, followed successively by drying at 120° C for 4 h and calcining at 900° C (850° C for SrF_2/Sm_2O_3) for 6 h. The resulting solid was crushed and sieved to 40-60 mesh particles. The pure rare earth oxides and SrF_2 used for the catalytic performance evaluation were also treated with the similar procedures as described above. Unless indicated elsewhere, the reagents used in the preparation were of analytical grade.

The catalytic reactions were carried out in a fixed bed quartz reactor (5.0 mm inside diameter) under the conditions of GHSV = $20000 \, h^{-1}$ and CH₄/O₂ = 3 (mole ratio). Methane (99.99%) and oxygen (99.5%) were used without further purification. In each experimental run, 0.20 ml of catalyst was used, and the

Table 1
Catalytic performance of the SrF₂/Ln₂O₃ catalysts for the oxidative coupling of methane

Catalyst (mole ratio)	Temperature (°C)	Conversion (%)		Selectivity (%)					C ₂ Yield
		CH ₄	O ₂	CO	CO ₂	C_2H_4	C ₂ H ₆	C ₂	(%)
Blank experiment	750	no activ	rity						
SrF ₂	750	0.7	2.4	0.0	46.0	0.0	54.0	54.0	0.4
La ₂ O ₃	750	29.8	100	10.2	52.0	20.0	15.8	35.8	10.7
2 0	700	29.4	100	10.5	52.3	21.5	15.7	37.2	10.9
SrF_2/La_2O_3 (1:4)	700	34.2	98.1	6.4	36.3	36.1	21.2	57.3	19.6
SrF_2/La_2O_3 (1:1)	750	35.6	99.2	10.6	34.3	31.4	23.7	55.1	19.6
Nd_2O_3	750	27.2	99.1	7.2	53.5	20.1	19.2	39.3	10.7
SrF_2/Nd_2O_3 (1:1)	750	34.3	98.9	4.0	38.9	33.1	24.0	57.1	19.6
Sm ₂ O ₃	800	26.3	99.2	8.9	52.3	21.6	17.2	38.8	10.2
SrF_2/Sm_2O_3 (1:1)	800	34.0	99.5	3.9	40.3	33.1	22.7	55.8	19.0
Eu ₂ O ₃	750	26.3	98.4	13.8	53.1	21.8	11.3	33.1	8.7
SrF_2/Eu_2O_3 (1:1)	750	33.1	99.0	6.7	40.4	31.9	21.0	52.9	17.5
Gd_2O_3	750	29.5	99.7	17.5	49.0	20.1	13.4	33.5	9.9
SrF_2/Gd_2O_3 (1:1)	750	34.4	99.5	5.9	39.5	32.0	22.6	54.6	18.8
Dy_2O_3	750	31.3	99.5	12.4	45.0	25.0	17.6	42.6	13.3
SrF_2/Dy_2O_3 (1:1)	750	32.6	96.3	8.5	40.0	32.0	19.5	51.5	16.8
Y ₂ O ₃	750	27.2	98.3	16.9	50.2	20.1	12.8	32.9	9.0
SrF_2/Y_2O_3 (2:1)	750	33.6	94.4	8.3	35.1	34.1	22.5	56.6	19.0

Feed: CH₄/O₂ = 3:1, no inert gas for dilution, GHSV = 20000 h⁻¹. The data were obtained after 30 min on stream.

gaseous effluent was analyzed at room temperature by an on-line Shang Fen 102GD gas-chromatograph equipped with thermal conductivity detector, with 5A molecular sieve column for O_2 and CO_2 and CO_3 and CO_4 and CO_5 and CO_5 and CO_6 an

The XRD measurements were carried out at room temperature on a Rigaku Rotaflex D/Max-C system with Cu K $\alpha(\lambda = 1.5406 \text{ Å})$ radiation. The samples were loaded on a sample holder with depth of 1 mm. XRD patterns were recorded in the range of $2\theta = 20-70^{\circ}$.

3. Results and discussion

3.1. Catalytic performance evaluation

The catalytic performances of a series of SrF_2 promoted rare earth sesquioxide catalysts with different SrF_2/Ln_2O_3 mole ratios were evaluated and the results were summarized in Table 1. The blank reactor was found to have no activity for the reaction between CH_4 and O_2 at

750°C. For pure rare earth oxides, such as La_2O_3 , Nd_2O_3 , Sm_2O_3 , Eu_2O_3 Gd_2O_3 and Y₂O₃ catalysts, 26-31% of CH₄ conversions with 30-43% of C₂ selectivities were obtained. When a certain amount of SrF₂, which had almost no activity for MOC reaction, was added to the oxide catalysts, CO_x (CO + CO₂) selectivities decreased significantly, while C₂ selectivities and yields were apparently improved under the same conditions, indicating that the addition of SrF₂ plays a significant promoting role for the MOC reaction with these REO as catalysts. Maximum C₂ yield of 19.6% was observed over SrF₂/La₂O₃ (1:4) and SrF₂/Nd₂O₃ (1:1) catalyst, respectively, which was about 9% higher than those over pure La₂O₃ and Nd₂O₃ under the same conditions. Comparatively, the promotional effect of SrF₂ on Dy₂O₃ was rather unpronounced, and similar results were also observed on the SrF₂ modified Ho₂O₃, Er₂O₃, Tm₂O₃ and Yb₂O₃ catalysts. This phenomenon may have resulted from the interaction between SrF_2 and Ln_2O_3 of which Ln = Dy, Ho, Er, Tm and Yb were relatively weak as compared with the other SrF₂ modified rare earth sesquioxide catalysts studied in this paper. It has been known that the conductivities of rare earth sesquioxides decrease with increasing atomic number (except for Y_2O_3), i.e. La_2O_3 , $\mathrm{Nd_2O_3} > \mathrm{Sm_2O_3} > \mathrm{Eu_2O_3} > \mathrm{Gd_2O_3} > \mathrm{Dy_2O_3}$ [14], suggesting that the mobilities of lattice

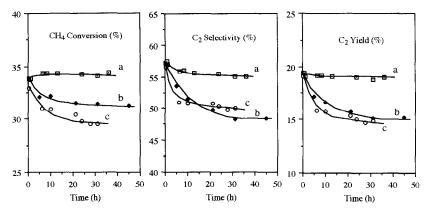


Fig. 1. Effect of time on stream over (a) SrF_2/La_2O_3 (1:4) at $700^{\circ}C$, (b) SrF_2/Nd_2O_3 (1:1) at $750^{\circ}C$, (c) SrF_2/Y_2O_3 (2:1) at $750^{\circ}C$ under the conditions of $CH_4:O_2=3:1$ (no dilution gas) and $GHSV=20000\ h^{-1}$.

oxygen may also decrease in this order. For those rare earth oxides with higher mobility of lattice oxygen, the anionic exchange between oxides and fluoride might be easier, which will be favorable to promote the interaction between the oxide and fluoride phases. From the data in Table 1, it is interesting to see that the decrease in C₂ yields of SrF₂/Ln₂O₃ catalysts follows the same order as the decrease in the conductivities of rare earth sesquioxides. In the next section, more discussion concerned with ionic exchange between rare earth sesquioxides and SrF₂ will be presented. As can be seen from Table 1, on both promoted and unpromoted REO catalysts, oxygen was almost completely consumed (\geq 95%) in the reactions carried out at 750°C or higher, which suggested that the results showed in Table 1 were obtained under an oxygenlimited condition.

The stability of the catalytic performance of the SrF_2 promoted Ln_2O_3 catalysts varied with the rare earth elements. The results in Fig. 1 shows the catalytic performance of three SrF_2

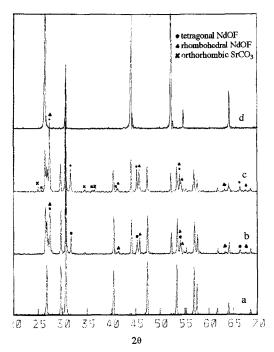


Fig. 2. ZX-ray powder patterns of (a) Nd_2O_3 , (b) fresh SrF_2/Nd_2O_3 (1:1), (c) used SrF_2/Nd_2O_3 (1:1), (d) SrF_2 samples.

promoted catalysts with respect to time on stream. The SrF₂/La₂O₃ (1:4) catalyst was characterized by a little increase in CH₄ conversion and decrease in C2 selectivity at the early period of reaction, as a result, the C₂ yield remained almost constant within a period of 36 h on stream. However, CH₄ conversion and C₂ selectivity over SrF₂/Nd₂O₃ (1:1) catalyst gradually decreased over a period of 30 h on stream, leading to the decrease of C2 yield from 19.6% to 15.2%. After that, both CH₄ conversion and C2 selectivity remained almost unchanged in the following 15 h. The decrease of catalytic performance was also observed over the SrF_2/Y_2O_3 (2:1) catalyst during a period of 31 h on stream. The loss of F⁻ from the catalysts as HF during the reactions appears not to be the only reason for the decrease in catalytic performance of the catalysts, because there is no a corresponding relation between the relative loss amounts of F⁻ from catalysts and the variations of catalytic performances.

3.2. Structure characterization

The XRD measurements indicated that new phases such as tetragonal and rhombohedral NdOF were formed in the fresh SrF₂/Nd₂O₃ sample (Fig. 2), suggesting that, during the process of the catalyst preparation, part of the F^- (r = 1.33 Å) in SrF_2 and O^{2-} (r = 1.32 Å) in Nd₂O₃ were substituted by O²⁻ and F⁻, respectively. Partial ionic exchange between SrF₂ and La₂O₃ phases and formation of the lanthanum oxyfluorides, such as tetragonal LaOF, may also happen in SrF_2/La_2O_3 system. Unfortunately, the diffraction lines of tetragonal LaOF [d = 3.35(100), 2.90(25), 2.06(60),2.05(33), 1.76(22) and 1.75(44) were overlapped with the characteristic diffraction lines of SrF_2 [d = 3.352(100), 2.900(25), 2.0508(80), 1.7486(52)] which made it difficult to identify the LaOF phase from a SrF₂/La₂O₃ catalyst. However, the formation of rhombohedral LaOF and LaF₃ have been detected by XRD in a similar 10%BaF₂/La₂O₃ catalyst [15]. For the

Table 2 The results of XRD analysis of the fresh SrF_2/Ln_2O_3 catalysts

Catalyst	Composition and structure a			
SrF ₂ /La ₂ O ₃ (1:4)	cubic SrF ₂ (w); hexagonal La ₂ O ₃ (s)			
$SrF_2/La_2O_3(1:1)$	cubic SrF ₂ (s); hexagonal La ₂ O ₃ (vs)			
SrF_2 / Sm_2O_3 (1:1)	cubic Sm ₂ O ₃ (vs); cubic SrF ₂ (s);			
	monoclinic Sm ₂ O ₃ (s)			
$SrF_2 / Eu_2O_3 (1:1)$	cubic Eu ₂ O ₃ (s); cubic SrF ₂ (m)			
SrF_2/Gd_2O_3 (1:1)	cubic Gd ₂ O ₃ (s); cubic SrF ₂ (m)			
$SrF_2/Dy_2O_3(1:1)$	cubic Dy ₂ O ₃ (s); cubic SrF ₂ (m)			
$SrF_2/Y_2O_3(2:1)$	cubic $Y_2O_3(vs)$; cubic $SrF_2(s)$			

vs — very strong, s — strong, m — medium, w — weak.

other samples, XRD only detected cubic SrF_2 and rare earth sesquioxide phases, such as hexagonal La_2O_3 , cubic and monoclinic Sm_2O_3 , cubic Eu_2O_3 , cubic Gd_2O_3 , cubic Dy_2O_3 , and cubic Sm_2O_3 (Table 2). Another interesting result from Table 2 was that the content of cubic Sm_2O_3 in the SrF_2/Sm_2O_3 (1:2) catalyst was a little more than that of monoclinic phase, while the pure Sm_2O_3 contained almost equal amounts of both phases, suggesting that cubic SrF_2 may play a certain role in stabilizing the cubic Sm_2O_3 at high temperature.

When the SrF_2/Ln_2O_3 catalysts were exposed to CH_4/O_2 (3:1) at 750°C for about 1.5 h, orthorhombic $SrCO_3$ resulting from the reaction between SrO and CO_2 (by-product of MOC reaction) was detected in the SrF_2/Nd_2O_3 (1:1) (Fig. 2) and SrF_2/La_2O_3 (1:4) catalysts (Table 3). This result provides further experimental evidence for the anionic or cationic exchanges between SrF_2 and the Ln_2O_3 phases. Besides,

Table 3
The results of XRD analysis of the SrF₂ /Ln₂O₃ catalysts after reacting about 1.5 h at 750°C

Catalyst	Composition and structure a			
SrF ₂ /La ₂ O ₃ (1:4)	cubic SrF ₂ (w); hexagonal La ₂ O ₃ (s) orthorhombic SrCO ₃ (w)			
SrF_2 / Sm_2O_3 (1:1)	cubic Sm ₂ O ₃ (s); cubic SrF ₂ (s); monoclinic Sm ₂ O ₃ (vs); rhombohedral SmOF(w)			
SrF_2 / Eu_2O_3 (1:1) SrF_2 / Y_2O_3 (2:1)	cubic Eu ₂ O ₃ (s); cubic SrF ₂ (m) cubic Y ₂ O ₃ (vs); cubic SrF ₂ (s); rhombohedral YOF (w)			

^a vs — very strong, s — strong, m — medium, w — weak.

XRD also detected the formation of rhombohedral SmOF and YOF phases in the used SrF_2/Sm_2O_3 (1:1) and SrF_2/Y_2O_3 (2:1) catalysts, respectively (Table 3), which indicated that the exchange between F and O2 was more favorable under the conditions of MOC reaction, and H₂O generated in the reaction might play a certain role in promoting such exchange. These results were also in line with the observation that the NdOF content in a used SrF_2/Nd_2O_3 (1:1) catalyst was higher than that in the fresh (Fig. 2). Based on these results, it is reasonable to suggest that the anionic exchange between oxide and fluoride phases also happened more or less in a fresh SrF_2/Sm_2O_3 (1:1) or SrF_2/Y_2O_3 (2:1) catalyst, but the content of SmOF or YOF is probably too low to be detected by XRD. No formation of new phase was detected in the used SrF₂/Eu₂O₃ (1:1) catalyst.

It has been generally accepted that one of the essential conditions for a compound with stable cationic valency to be a good MOC catalyst is the presence and the mobility of the anionic vacancies in the lattice, so as to adsorb and activate O₂ during the reaction [16]. According to the literature, the structure of cubic Ln₂O₃ compounds is closely similar to that of the fluorite but with 1/4 intrinsic oxygen vacancies [17]. The structure of hexagonal Ln₂O₃ can be described by slabs of OLn₄ tetrahedrons linked by three of their edges and forming a complex group cation $(LnO)_n^{n+}$ separated by ionic oxygens O2-. The monoclinic structure is very similar to hexagonal, but the tetrahedrons are distorted [17]. 'Genetic' vacancies also exist in the hexagonal structure of Ln₂O₃ and monoclinic structure of Sm₂O₃. However, their concentrations are lower (ca. 17% of vacant positions in the oxygen sublattice) than those of cubic phase [18]. The tetragonal NdOF can be expressed by the formula LnO_xF_{3-2x} (0.7 < x \leq 1) [19,20], whose structure is closely similar to that of the fluorite. The excess of F⁻ ions can be accommodated in a fluorite-like structure and occupy some of the interstitial position as Frenkel defect [20]. The rhombohedral oxyfluorides are found to be of a single phase, which chemical composition is sharply defined and corresponds exactly to LnOF [19]. This structure is also a slightly distorted CaF₂-type structure. Taking into consideration the fact that many compounds with fluorite-type structure, such as alkaline earth halides, ZrO2, etc. have anion Frenkel defects and anionic vacancies [21], it is reasonable to postulate that the similar anionic vacancies might also exist in the oxyfluoride compounds with fluorite-like structure. On the other hand, the ionic exchange between the oxide and fluoride phases of a SrF₂/Ln₂O₃ catalyst may also lead to the formation of anionic vacancies and other lattice defects such as F-center or O species in order to maintain electroneutrality. The presence of anionic vacancies and F-center in the above catalyst will be favorable to the adsorption and activation of O₂ under the reaction condition.

4. Conclusions

Based on the above results, it can be concluded that the extent of F and O2 exchange in the SrF₂/Ln₂O₃ catalysts are in the order Nd, La > Sm, Y > Gd, Eu, Dy. For those rare earth oxides with higher mobility of lattice oxygen, the interaction between oxides and fluoride will take place easily, which will be favorable to the formation of new oxyfluoride compounds and lattice defects including anionic vacancies, F-centers and O⁻ in the catalysts. The existence of anionic vacancies and the possible formation of F-centers of the oxyfluoride compounds will be favorable to the adsorption and activation of molecular oxygen under the MOC condition. The adsorption and activation of oxygen on the catalyst surface have been supported by the in situ FTIR spectroscopic observation of O₂⁻ adspecies with characteristic vibration frequency near 1113 cm⁻¹ on the O₂-adsorbed SrF_2/Nd_2O_3 (1:1) and SrF_2/La_2O_3 (1:4) catalysts at 700°C and 650°C, respectively [13,22]. On the other hand, the dispersion of F⁻ on the surface of the catalysts will also be helpful to the isolation of the surface 'active oxygen' centers and the improvement of the C_2 selectivity. Therefore, the highest C_2 yield was obtained over SrF_2 promoted Nd_2O_3 and La_2O_3 catalysts among these catalysts, whereas, due to the weak interaction between SrF_2 and Dy_2O_3 , the promoting effect of SrF_2 was not apparent for MOC reaction over SrF_2/Dy_2O_3 (1:1) catalyst.

Acknowledgements

This work has been supported by the National Natural Science Foundation of China.

References

- [1] K. Otsuka, K. Jinno and A. Morikawa, Chem. Lett., (1985) 499.
- [2] K.D. Campbell, H. Zhang and J.H. Lunsford, J. Phys. Chem., 92 (1988) 750.
- [3] J.H. Lunsford, Catal. Today, 6 (1990) 3.
- [4] S. Lacombe, C. Geantet and C. Mirodatos, J. Catal., 151 (1994) 439.
- [5] Z. Kalenik and E.E. Wolf, in A. Holmen et al. (Eds.), Natural Gas Conversion, Elsevier, Amsterdam, 1991, p. 97.
- [6] H. Yamashita, Y. Machida and A. Tomita, Appl. Catal. A: Gen., 79 (1991) 203.
- [7] A.Z. Khan and E. Ruckenstein, J. Catal., 138 (1992) 322.
- [8] R. Burch, G.D. Squire and S.C. Tsang, Appl. Catal., 48 (1988) 105.
- [9] J.H. Lunsford, P.G. Hinson, M.P. Rosynek, C. Shi, M. Xu and X. Yang, J. Catal., 147 (1994) 301.
- [10] D. Wang, M.P. Rosynek and J.H. Lunsford, J. Catal., 151 (1995) 155.
- [11] X.P. Zhou, W.D. Zhang, H.L. Wan and K.R. Tsai, Catal. Lett., 21 (1993) 113.
- [12] X.P. Zhou, S.Q. Zhou, S.J. Wang, J.X. Cai, W.Z. Weng, H.L. Wan and K.R. Tsai, Chem. Res. Chin. Univ., 9(3) (1993) 264.
- [13] X.P. Zhou, S.Q. Zhou, W.D. Zhang, Z.S. Chao, W.Z. Weng, R.Q. Long, D.L.Tang, H.Y. Wang, S.J. Wang, J.X. Cai, H.L. Wan and K.R. Tsai, Preprints, Division of Petroleum Chemistry, Vol. 39(2), ACS, 1994, p. 222.
- [14] K.A. Gschneidner, Jr. and L. Eyring, Handbook on the Physics and Chemistry of Rare Earth, Vol. 3, North-Holland, 1979, Chap. 27, p. 385.
- [15] C.T. Au, H. He, S.Y. Lai and C.F. Ng, Proc. 1st Global Conf. Young Chinese Scientists on Catalysis Science and Technology, Tianjin, China, 12-15 Sept. 1995, p. 193.
- [16] A.G. Anshits, E.N. Voskresenskaya and L.I. Kurteeva, Catal. Lett., 6 (1990) 67.

- [17] K.A. Gschneidner, Jr. and L. Eyring, Handbook on the Physics and Chemistry of Rare Earths, Vol. 5, North-Holland, 1982, Chap. 44, p. 322.
- [18] E.N. Voskresenskaya, V.G. Roguleva and A.G. Anshits, Catal. Rev.-Sci. Eng., 37(1) (1995) 101.
- [19] K. Niihara and S. Yajima, Bull. Chem. Soc. Jpn., 44 (1971) 643
- [20] A. F. Wells, Structural Inorganic Chemistry, 5th edn., Oxford Univ. Press, NY, p. 483.
- [21] Z. Zhang, M. Baerns et al., Catal. Rev.-Sci. Eng, 36(3) (1994) 507.
- [22] R.Q. Long, H.L. Wan, H.L. Lai and K.R. Tsai, Chem. J. Chin. Univ., in press.